
April, 2005

Visual FoxPro 9/8/7

Easier Date Entry

Give users a control that makes entering dates as easy as it is in
Intuit Quicken.

By Tamar E. Granor, technical editor

As I've written previously, I think the user interface for Intuit's
Quicken is an excellent piece of work. It's full of little things that make

it much easier to enter what I find to be incredibly boring data: my

personal accounting information. Over the years, I've tried to bring
some of those features into my own applications. (For example, see

my article "Add QuickFill to Your Combos" in the September 1998
issue.)

One area where Quicken shines is date entry. Quicken's date text box
lets you modify the displayed date in a variety of ways and offers a

calendar for selecting a date. The date text box lets you use the + and
- keys to change the entry one day at a time, and it accepts a number

of shortcuts, such as "T" for today's date, "M" for the first of the
month, and so on. Of course, you can simply type the desired date, as

well.

It's possible to build a similar control with native Visual FoxPro code

(see the sidebar), but the ActiveX Date and Time Picker control that
comes with VFP already includes a drop-down calendar. It doesn't take

much code to make it respond to the appropriate keystrokes.

To provide Quicken-like date manipulation, I built a custom class with
all the necessary code. This article shows you what you need and

discusses a few issues that have to be resolved. Figure 1 shows the
custom control with the calendar expanded.

Figure 1: Date and time picker -- This control makes it easy to enter or choose a
date.

Set up a Date and Time Picker subclass

My oleQuickenDatePicker class, included on this issue's Professional
Resource CD, is based on (but not subclassed from) the acxDTPicker

class, which Marcia Akins published in MegaFox: 1002 Things You
Wanted to Know about Extending Visual FoxPro. (I included Marcia's

code in this article with her permission.) In particular, the Date and
Time Picker control has problems when you bind it to a field with an

empty value; Marcia's code works around that limitation. The class has
custom cControlSource and tDefaultValue properties. Code in Init

copies the ControlSource to the cControlSource property and unbinds

the control.

Code in Change and Refresh calls the custom UpdateControlSource

and SetValue methods, respectively. The Change method calls
UpdateControlSource whenever the user changes the value of the

control; UpdateControlSource stores the new value to the actual
control source (whose name is stored in cControlSource), like this:

LOCAL lcAlias
WITH This
 lcAlias = UPPER(JUSTSTEM(.cControlSource))
 IF INLIST(lcAlias, "THIS", "THISFORM")
 STORE .Object.Value TO (.cControlSource)
 ELSE
 REPLACE (JUSTEXT(.cControlSource)) ;
 WITH (.Object.Value) ;
 IN (JUSTSTEM(.cControlSource))
 ENDIF
ENDWITH

SetValue, called by Refresh, handles the other side of the problem,

retrieving the value from the actual control source whenever the
control is refreshed. The code ensures the control never contains an

empty date, replacing that value with a specified default value (the

tDefaultValue property):

LOCAL ltValue
*** Make sure the field doesn't contain an empty date
ltValue = EVALUATE(This.cControlSource)
IF NOT EMPTY(NVL(ltValue, ''))
 This.Object.Value = ltValue
ELSE
 This.Object.Value = This.tDefaultValue
ENDIF

In addition, because the Quicken-like control is only for dates, not
datetimes, I used the control's ActiveX property sheet to set the date

format to 1-dtpShortDate and sized the control to show just the date.

Add Quicken keystrokes

With the problem of empty dates out of the way, let's look at the code

you need for Quicken-type date manipulation. You need two more
custom properties: lHandled and lOldAutoYield. I'll explain how to use

them later in the article.

Most of the code for emulating Quicken's behavior is in a custom

method called HandleKey, which is called from the control's KeyPress
method. HandleKey checks for the various keystrokes that can modify

the date (shown in table 1) and processes them. All the keys that
change to the first or last day of a particular period are sensitive to the

current date value; if it's already an item of the specified type (such as
the first day of the month or the last day of the year), pressing the key

goes back or forward one more of the specified period. For example, if
the date in the control is April 1, 2004, and the user presses M, the

date changes to March 1, 2004. If the user presses M again, the date

changes to February 1, 2004.

Table 1: Quick date manipulation -- The Quicken Date Picker handles these
keystrokes.

Key Meaning

+ Increase date by one day.

- Decrease date by one day.

T Change to today's date

Key Meaning

W Change to first day of week (based on SET FDOW value). If the
date is already the first day of the week, go back one week.

K Change to last day of week (based on SET FDOW value). If the

date is already the last day of the week, go forward one week.

M Change to first day of month. If the date is already the first day

of the month, go back one month.

H Change to last day of month. If the date is already the last day
of the month, go forward one month.

Y Change to first day of year. If the date is already the first day of
the year, go back one year.

R Change to last day of year. If the date is already the last day of

the year, go forward one year.

Like many VFP controls, the Date and Time Picker has a KeyPress
event, which fires when the user types any key. The code for the

KeyPress method is quite simple. It calls the HandleKey method and
then checks to see whether the current keystroke was handled. If so,

the method sets the KeyAscii parameter to 0 to prevent the control's
default behavior. (For most of the keys handled by this code, the

default behavior is simply to beep.) Setting KeyAscii to 0 here is

analogous to issuing the NODEFAULT command in VFP's native
KeyPress method. But NODEFAULT doesn't prevent default behavior in

ActiveX controls; each control has its own approach to that. The code
in KeyPress is short and sweet:

LPARAMETERS keyascii

LOCAL lHandled

This.HandleKey(KeyAscii)
IF This.lHandled
 keyascii=0
 * Need to call Change explicitly because it's
 * suppressed by change to keyascii
 This.Change()
ENDIF

* Prepare for next keystroke

This.lHandled = .F.
RETURN keyascii

Here's the code for the HandleKey method, the heart of this control:

LPARAMETERS nKey

LOCAL dOriginalValue

dOriginalValue = TTOD(This.Object.Value)

DO CASE
CASE UPPER(CHR(nKey)) = "T"
 * Today's date
 This.Object.Value = DATE()
 This.lHandled = .T.

CASE UPPER(CHR(nKey)) = "W"
 * First of week. If already on first of week,
 * go back a week.
 IF DOW(dOriginalValue) = SET("FDOW")
 This.Object.Value = dOriginalValue - 7
 ELSE
 This.Object.Value = dOriginalValue - ;
 MOD(DOW(dOriginalValue) - SET("FDOW"), 7)
 ENDIF
 This.lHandled = .T.

CASE UPPER(CHR(nKey)) = "K"
 * End of week. If already on end of week,
 * go forward a week.
 nLastDayOfWeek = EVL(SET("FDOW")-1,7)
 IF DOW(dOriginalValue) = nLastDayOfWeek
 This.Object.Value = dOriginalValue + 7
 ELSE
 This.Object.Value = dOriginalValue + ;
 MOD(nLastDayOfWeek-DOW(dOriginalValue), 7)
 ENDIF
 This.lHandled = .T.

CASE UPPER(CHR(nKey)) = "M"
 * First of month. If already on first of month,
 * go back a month
 IF DAY(dOriginalValue) = 1
 This.Object.Value = GOMONTH(dOriginalValue, -1)
 ELSE
 This.Object.Value = dOriginalValue - ;
 DAY(dOriginalValue) + 1
 ENDIF
 This.lHandled = .T.

CASE UPPER(CHR(nKey)) = "H"
 * Last of month. If already on last of month,
 * go forward another month.
 IF DAY(dOriginalValue + 1) = 1 && last of month

 This.Object.Value = GOMONTH(dOriginalValue + 1, 1) ;
 - 1
 ELSE
 This.Object.Value = GOMONTH(dOriginalValue - ;
 DAY(dOriginalValue) , 1)
 ENDIF
 This.lHandled = .T.

CASE UPPER(CHR(nKey)) = "Y"
 * First of year. If already on first of year,
 * go back a year
 IF MONTH(dOriginalValue) = 1 AND DAY(dOriginalValue) = 1
 This.Object.Value = GOMONTH(dOriginalValue, -12)
 ELSE
 This.Object.Value = DATE(YEAR(dOriginalValue), 1, 1)
 ENDIF
 This.lHandled = .T.

CASE UPPER(CHR(nKey)) = "R"
 * Last of year. If already on last of year,
 * go forward a year.
 IF MONTH(dOriginalValue) = 12 AND ;
 DAY(dOriginalValue) = 31
 This.Object.Value = GOMONTH(dOriginalValue, 12)
 ELSE
 This.Object.Value = DATE(YEAR(dOriginalValue), 12, 31)
 ENDIF
 This.lHandled = .T.

CASE nKey = 43 AND NOT This.lHandled && "+"
 This.Object.Value = dOriginalValue + 1
 This.lHandled = .T.

CASE nKey = 45 AND NOT This.lHandled && "-"
 This.Object.Value = dOriginalValue - 1
 This.lHandled = .T.

OTHERWISE
 * Do nothing
ENDCASE

Suppress normal behavior

When the calendar isn't open, one portion of the date (the month, the
day, or the year) is highlighted. By default, pressing + or – increases

or decreases that portion by 1. As table 1 indicates, the entire date
should change by one day rather than changing a single piece of the

date. If the user presses + or – on the alphabetic portion of the
keyboard, the KeyPress event fires and calls HandleKey. However, the

control handles the + or – on the numeric keypad earlier, in its

KeyDown event. So, you need code in KeyDown to prevent the default
behavior:

LPARAMETERS keycode, shift

LOCAL dCurrent

* Have to change built-in behaviors here. KeyPress is too late.
* This code suppresses the normal behavior of + and - on the
* numeric keypad. Then, KeyPress can handle them along with the
* + and - from the alphabetic keyboard.
DO CASE
CASE INLIST(KeyCode, 107, 109) && + or -
 keycode = 0
ENDCASE

RETURN keycode

To make all this code work, you have to set the AutoYield property of

_VFP to False. The custom lOldAutoYield property saves the original
value of AutoYield. Then, code in Init sets it to False, and code in

Destroy restores the original value.

Limits

There are a couple of behaviors of the Quicken date control that I
haven't been able to duplicate with the Date and Time Picker. In

Quicken, the keystrokes in table 1 work even in the drop-down

calendar. I haven't found an event that fires when the user presses a
key while the calendar is open. So, VFP ignores all the special

keystrokes when the calendar section is open.

In addition, I've found no way to highlight the entire date rather than

just one portion (day, month or year).

Put the Quicken date control to work

Using the control is as easy as dropping it on a form. You might want

to set its ControlSource or use the ActiveX property sheet to specify an
initial value.

This issue's Professional Resource CD contains QuickenDateDemo.SCX,
a form shown in figure 2 that includes two Quicken date controls for

you to test.

Figure 2. Using the Quicken date control -- After you create the class, all you have to
do is drop the control onto a form, and all the Quicken date functionality is there.

Whether they've worked with Quicken or not, users will love having its

many ways to set the date available in your VFP applications.

Sidebar: Built-In Date Manipulation

Although they don't support the whole set of keystrokes Quicken does,

VFP text boxes let you use + and - to change by one day at a time.
This functionality is available when the ControlSource for the text box

has type date or datetime. However, the the entire date must be
selected before the keystroke, so it's a good idea to set the Format

property to K.

